基本信息更新时间 Memetic Computing_影响因子分区信息-主页
当前位置: 首页 > SCI期刊 > 计算机科学 > 计算机:人工智能 > Memetic Computing
Memetic Computing 2023年12月最新中科院分区表数据已经更新!2024年预审已开通,评估通过后包通过,欢迎咨询!
期刊名:
ISSN:
IF: -
SCI收录:
大类学科:
小类学科:
中科院分区:
是否OA期刊:
Memetic Computing
期刊名:

Memetic Computing

期刊名缩写:MEMET COMPUT (此期刊被最新的JCR期刊SCIE收录)

期刊收录信息: SCIE Scopus收录

信息更新时间:2023年12月
  • 影响因子: 4.7
  • 出版国家或地区: GERMANY
  • 期刊ISSN: 1865-9284
  • 出版商: Springer Berlin Heidelberg
  • E-ISSN: 1865-9292
  • 出版周期: 4 issues per year
  • JCR分区: Q2
  • 出版语言: English
  • 自引率: 12.80%
  • 出版年份: 2009
  • 是否OA开放访问: NO
  • 期刊官方网站: https://www.springer.com/12293
  • 年文章数: 33
  • 期刊投稿网址: https://www.editorialmanager.com/meme
  • Gold OA文章占比: 7.95%
  • 通讯方式: TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121
  • 期刊导读: 《Memetic Computing》杂志,2023年发布的影响因子为:4.7 ,中科院分区:2区,JCR分区:Q2,该期刊是由 GERMANY, Springer Berlin Heidelberg 出版的计算机科学类学术期刊,主要刊载计算机科学相关领域的原创研究文章和评论文章,该期刊目前收录在 【SCIE】 【Scopus收录】 等数据库,平均审稿速度(),平均录用比例() 123学术网专业SCI论文编辑服务(包括SCI论文英语润色,同行资深专家修改润色,SCI论文专业翻译,SCI论文格式排版,专业学术制图,发表等)帮助作者准备稿件,如自行投稿请联系《Memetic Computing》杂志官方:https://www.springer.com/12293,《Memetic Computing》通讯地址为:TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121。详细的期刊简介下拉到底部查看!
《Memetic Computing》JCR分区:Q2
按学科分区 JIF分区 JIF排名 JIF百分位

学科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

分类:SCIE

Q2 59/145
59.7%

学科:OPERATIONS RESEARCH & MANAGEMENT SCIENCE

分类:SCIE

Q2 22/86
75.0%
中科院《国际期刊预警名单(试行)》名单
2023年01月发布的2023版:不在预警名单中

2021年12月发布的2021版:不在预警名单中

2021年01月发布的2020版:不在预警名单中

《国际期刊预警名单(试行)》2023版共计包含28本期刊(查看


《国际期刊预警名单(试行)》2021版共计包含35本期刊(查看


《国际期刊预警名单(试行)》2020版共计包含65本期刊(查看

《Memetic Computing》中科院SCI期刊分区

2023年12月最新升级版:

大类学科 小类学科 Top 综述期刊
计算机科学 2区

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能

2区

OPERATIONS RESEARCH & MANAGEMENT SCIENCE 运筹学与管理科学

2区
NO NO

2022年12月升级版:

大类学科 小类学科 Top 综述期刊
计算机科学 3区

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能

3区

OPERATIONS RESEARCH & MANAGEMENT SCIENCE 运筹学与管理科学

3区
NO NO
《Memetic Computing》期刊简介
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.

The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:

Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.